7.3 – Completing the Square

Daily Objectives:

1. Explore projectile motion.

2. Understand completing the square as one way to convert the general form of a quadratic equation to vertex form.

3. Use formulas to convert the general form of a quadratic equation to vertex form.

4. Use the vertex form of a quadratic equation to solve problems involving minimums or maximums.

Maximum:

Minimum:

Investigation: Completing the Square

Step 1: Complete a rectangle diagram to find the product (x+5)(x+5), which can be written as $(x+5)^2$.

$$x^{2}+5x+5x+25$$

 $x^{2}+10x+25$

Write out the four-term polynomial, and then combine any like terms you see and express your answer as a trinomial.

What binomial expression is being squared, and what is the perfect square trinomial represented in the rectangular diagram below:

$$x^2$$
 $-8x$ $-8x$ -64

$$\left(x-8\right)^{2}$$

$$\chi^{2}-16x+64$$

Find the perfect-square trinomial equivalent to $(a+b)^2$.

Describe how you can find the first, second, and third terms of the perfect-square trinomial (written in general form) when squaring a binomial.

$$(a+b)(a+b)$$

 $a^{2}+ab+ab+b^{2}$
 $a^{2}+2ab+b^{2}$

Square first term 2 x first term x 2 x term Square second term

Step 2: Consider the expression $x^2 + 6x$.

	X	3
ж.	x ¹	Ju .
142	2	<u></u>

What could you add to the expression to make it a perfect square?

b. If you add a number to an expression, then you must also subtract the same number in order to preserve the value of the original expression. Fill in the blanks to rewrite $x^2 + 6x$ as the difference between a perfect square and a number.

$$x^{2} + 6x = x^{2} + 6x + \underline{9} - \underline{9} = (x+3)^{2} - \underline{9}$$

Step 3: Consider the expression $x^2 + 6x - 4$

- a. What must be added to and subtracted from $x^2 + 6x$ to complete a perfect square yet preserve the value of the expression? x2+6x+9-9-4
- b. Rewrite the expression $x^2 + 6x 4$ in the form $(x h)^2 + k$.

Step 4: Rewrite each expression in the form $(x-h)^2 + k$.

a.
$$x^2-14x+3$$

 $\times^2-14x+49-49+3$
 $(x^2+9x-10)$
 $(x^2+9x+81-81-10)$
 $(x^2+9x+81-81-10)$
 $(x^2+9x+81-81-10)$
 $(x^2+9x+81-81-10)$

b.
$$x^2 + 9x - 10$$

 $x^2 + 9x + \frac{81}{4} - \frac{81}{4} - \frac{10}{4}$
 $\left(x + \frac{9}{2}\right)^2 - \frac{121}{4}$

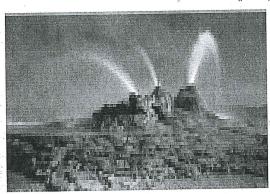
c.
$$x^2 + 20x + 12$$

 $x^2 + 20x + 100 - 100 + 12$
 $(x + 10)^2 - 89$

Projectile Motion Function

The height of an object claims or failing under the following of gravity is modeled by the function $y=a\times \frac{2}{7}\%\times +S_0$

k = dr i + r r + r r



where x represents time in seconds, y represents the adject's beight from the ground in melecs or feet, a is half the downward acceleration due to gravity (on Earth, a is $-4.0~\rm{m/s}^2$ or $-16~\rm{ft/s}^2$). v_0 is the initial appeared velocity of the object in meters per second or feet per second, and s_0 is the initial height of the abject in meters or feet.

The water arupting from those gaysers in Black Back Casers, Newman, follows a path That can be described as projectile motions. a = -4.9 m/s = a = -16 ft/s = Vo = initial upward velocity
So = initial height of object

Example 1: Nora hits a softball straight up a speed of 120 ft/s. If her bat contacts the ball at a height of 3 ft above the ground, (a) write the function to represent this situation.

b. When does the ball reach its maximum height?

Example 2: A stopwatch records that when Julie jumps in the air, she leaves the ground at 0.25 seconds and lands at 0.83 seconds. How high did she jump?

$$x = .83$$
 $x = .25$ $a = -16ft/s^2$
 $y = a(x - .83)(x - .25)$ Vertex is highest point, halfway
 $y = -16(x - .83)(x - .25)$ between intercepts
 $y = -16(.54 - .83)(.54 - .25)$ $\frac{.83 + .25}{2} = \frac{1.07}{2} = .54$
 $y = -16(-.29)(.29)$
 $y = 1.3456$ ft